Encoding script-specific writing rules based on thecode character set

Encoding script-specific writing rules based on théJnicode character set
Malek Boualem & Mark Leisher

CRL (Computing Research Laboratory), New Mexicde&Staniversity,
Box 30001, Dept 3CRL, Las Cruces, NM 88003, USA
E-mail: malek@crl.nmsu.edu, mleisher@crl.nmsu.ed

http://crl.nmsu.edu

Abstract:

The World Wide Web is now the primary means for information interchange that is
mainly represented in textual format. However programs that create and view these texts
generally do not adequately support texts using non-Latin scripts, particularly right-to-left
scripts. Unicode as a universal character set solves encoding problems of multilingual texts. It
provides abstract character codes but does not offer methods for rendering text on screen or
paper. An abstract character such "ARABIC LETTER BEH" which has the U+0628 code value
can have different visual representations (called shapes or glyphs) on screen or paper, depending
on context. Different scripts which are part of Unicode can have different rules for rendering
glyphs, composite characters, ligatures, and other script-specific features. In this paper we
present a general approach to encoding script-specific rendering rules based on the Unicode
character set and using finite state transducer. The proposed formalism for character
classification and writing rules is modular and easy to read and to modify by average users. In
addition it is based on the most stable font structure defined in the Unicode Standard, thus it
should be reusable by other environments supporting fonts from the Unicode Standard. Moreover
the associated program is written in JAVA which makes it portable in many environments. This
approach will be demonstrated with writing rules for some languages that use the Arabic script.

|. Introduction

The Unicode Standard does not define glyph imagiedefines how characters are
interpreted, not how glyphs are rendered. The so#twor hardware-rendering engine of a
computer is responsible for the appearance of ltlagacters on the screen. Context analysis for
rendering correct character glyphs is necessarynfany scripts. The objective of the work
presented here is designed to address multiplelgansb Until the Unicode Standard is stable,
most of the text editing software use (and stit)usharacter fonts relative with other character
coding standards or dependent upon local speafidware environment. So the context analysis
programs are often also designed dependent onst character font formats. Sometimes to
simplify the program processing, some charactetsfare modified and the physical locations of
the characters do not correspond to their logioedtions. Consequently, it becomes difficult or
even impossible to re-use these programs with déhxreditors using character fonts structured

in a different way (unless the same character farésised).

14" International Unicode Conference -1- Boston, MA, March 1999

Encoding script-specific writing rules based on thecode character set

Another problem which also is important is the fétat the formalisms used for the
context analysis (character classes and writingsjumust preferably be modular and easily
readable and modifiable by users. Indeed thesauéayggspecific characteristics may be defined
by users who have knowledge in the specified laggsiand who are not necessary computer
programers. However the compromise of effectivelméssocessing often pushes the developers
to design too technical formalisms that only theyable to read and to modify.

The objective of this work is to present a modeltfee context analysis which is on the
one hand modular and compatible with the Unicodadsrd, and on the other hand expressed in
a formalism that is easily readable and accessibiesers. Thus, it will be possible to re-use this
analyzer in other environments supporting chardotas from the Unicode Standard. This work
was completed to improve the context analyzerberNMUTT multilingual text editor described
below (that is why we called it MUTTCA: Multilingli&nicode Text Toolkit Context Analyzer).

In addition the associated program is written inVAAwhich makes it portable in many
environments. Lastly, the context analyzer we prebkere has been designed on the basis of the
context analyzer we designed in the framework ef development of MtScrifitthe Multext
[MULT.97] multilingual text editor [BOUA.97].

[I. The Unicode Standard
2.1. Definition

The Unicode Worldwide Character Standard is a dtaracoding system designed to
support the interchange, processing, and displapefvritten texts of the diverse languages of
the modern world. In addition, it supports claslsiaad historical texts of many written
languages. The Unicode Standard is a 16-bit cleraotd is code-for-code identical to the
International Standard ISO/IEC 10646. To keep dtaracoding simple and efficient, the
Unicode Standard assigns each character a unigbé télue, and does not use complex modes
or escape codes. The Unicode Standard defines émdelsaracters used in the major languages
written today. Some of the scripts included arer, dreek, Cyrillic, Armenian, Hebrew, Arabic,
Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tarielugu, Kannada, Malayalam, Thai,
Lao, Georgian, Tibetan, Japanese Kana, the comphkditeof modern Korean Hangul, and a
unified set of Chinese/Japanese/Korean (CJK) iggagg. More scripts and characters are to be
added shortly [UNIC.98].

2.2. Text Processing

Computer text handling involves processing and éimgp The Unicode Standard directly
addresses only the encoding and semantics oflteddresses no other action performed on the
text (character glyphs, misspelled words, ...).important principle of the Unicode Standard is
that it does not specify how to carry out thesecpsses as long as the character encoding and
decoding is performed properly [UNST.96].

! MtScript.1.1 for Solaris and Linux systems is fyesvailable and can be downloaded at the URL:
http://mww.lpl.univ-aix.fr/projects/multext/MtScript/

14" International Unicode Conference -2- Boston, MA, March 1999

Encoding script-specific writing rules based on thecode character set

l1l. Multilingual text editing
3.1. Difficulties in multilingual text editing design

Multilingual text-editing design difficulties occusn several levels: inputting, coding,
editing, printing and data exchange (see figure 1).

Printing

Data Exchange

Editing

Coding

Input

Multilingual text-editing implementational difficulties

Figure 1.

3.1.1. Text inputting

Many keyboards represent only ASCIl charactersI§d 646), but certain localized
keyboards may also include keys for special charadFrench accented characters, etc.). In a
broad multilingual context, the inclusion of langea such as Chinese (more than 6000
ideograms) or Arabic (approximately 4 sets of 2&ts and 10 vowels) requires the definition of
specific keyboard input programs. Solutions prodoby computer manufacturers are very
heterogeneous. Theoretically there exists a stdnidigut method for keyboards with 48 keys
(ISO/IEC 9995-3), at least for the Roman alphabet,it is rarely used. A number of keyboard
input methods are being proposed especially forl$@ 10646 [LABO.95] but is necessary to
develop intuitive keyboard methods and, if possit#duce the number of key presses.

3.1.2. Character coding

Computer manufacturers and software developers nuseerous specific and non-
compatible character codes. Meanwhile charactemgodorms have been standardized on an
international level and are already used in someér@mments (ISO 8859 series). More recently
the joined ISO 10646 and Unicode is proposed asiversal character set using a 16-bit code
extensible to 32-bit in future editions. Howevesnof the existing environments strongly based
on the ASCII code are not yet ready to implemendrabter sets on multiple-octet code.
Moreover SGML entities have been defined for enegdihe characters of many different
languages, and SGML is being used as a standatieonultilingual document interchange.

14" International Unicode Conference -3- Boston, MA, March 1999

Encoding script-specific writing rules based on thecode character set

3.1.3. Text editing

Most of the languages are written horizontally frigft to right, but some languages, such
as Arabic or Hebrew, are written from right to leks a consequence, the co-existence of
languages in the same document, and particularlthensame line of the text, poses huge
problems when inserting or deleting text zones. &le in figure 2 shows that it is often
necessary to rearrange words to maintain the sé&r@tterence of a sentence.

The sequence "The fables of {ieu 5 4LIS" is stored:

The fables of JJgdd 5 0pay8

If we replace the Arabic word "4" by its English equivalent "and,”

the stored sequence becomes:
The fables of JJ g J5 and o83

but the displayed sequence should be "The fables of LIS and <ie."

Figure2. Word rearrangementsin a multilingual text

3.1.4. Printing

Printing multilingual texts suffers most obviousfyom the lack of printer fonts
(essentially PostScript fonts). Many PostScript$care now available (freely or not) for Roman
characters, but only a few fonts have been devdlémethe other character sets. Significant new
efforts in this area include the OMEGA project aities [YHJIP.95] for multilingual TeX and the
works of C.Bigelow and K.Holmes [CBKH.95] in desigg a UNICODE fontUnicode Lucida
Sans for editing and printing multilingual electronic daments.

3.1.5. Data exchange

With the rapid growth in the use of the Internetl ahe Wold Wide Web, the electronic
transfer of multilingual documents is becoming marel more necessary. Until recently, only
one part of the standard invariant characters efI80 646-IRV (ASCII) could allow a non-
corrupted electronic text exchange, and multilinglecuments could be transmitted safely only
with the assistance of coding utilities suchlA$ENCODE and BINHEX. However the situation
is improving: standards have been adopted on ttexniet which allow the transfer of 8-bit
characters without corruption in the TCP/IP protogor example, applications SUCFELNET
andFTP are "8-bit clean"). In addition, thdIME norm allows uninterrupted data transfer in any
circumstance by compressing and decompressingildse However the emerging UNICODE
standard still needs transformation formats (UTHRe8)information exchange. One must point
out that the current guarantee for data transférowut corruption does not extend to the transfer
of multilingual data.

14" International Unicode Conference -4 - Boston, MA, March 1999

Encoding script-specific writing rules based on thecode character set

3.2. Context analysis

In a text editor the context analyzer is a procedwhich analyzes character codes
provided through the keyboard or through a textternal structure to generate individual or
combined graphic forms (glyphs) according to speeihd predefined rules. Most of the existing
context analysis methods are local to specific égtors or to specific script fonts. Even though
theoretical algorithms are general, the designedrams always depend on local environments,
making the context analysis programs not modulat aat portable. To make the context
analysis programs easy one could modify the lonatiothe glyphs in a font or duplicate them
(see figure 3). But these costumized programs oanum with any other font [BOUA.90].

L s2z 623 624 625 (=) 627 528 523 B2A

T c=- |kl =4 | eo5 | ese | eor | coc Wl cen

(Rl 647 645 43 B4R

g E52 663 [=C [21=2) E5E [l 212 E53 [
EAz FEAZ FEA4 FEAS FEARG FEA? S FERZ F

EEz FEE3Z FEE4 FEES FEE& FEE? FEE; F

a =
ecz | FeC3 | FEC4 FECe | FECF | FECE | FECTNF

E
EDz FEDZ FED4 FEDS FED& FED? FEL: FED2 F\

| = I T 7 | free | FrE

F2= Fraa J Fras | Free | Frav FFZ

- »
F4z | Fras | Fraq FFd6 | Fra7 | FraoNL FEd

Y

F52 | Fres | Froa | Froe | Free | Fros J Free | PR
| |

H FFE4 | FFES | FFE: | FFEZ | FF. FF

[=5
2 | FFcs | Frea FFCé | FrCr | PR | FRCo | FF
N

2| Fros | Fro4 | Fros | FrDe | FRO7 | FrDe | FRO9 | FF

Figure 3°. In this costumized font the glyphs are reached through regular translations

Generally the context analyzer is associated witietaof character classes and a set of
writing rules. It is preferable that this formalishould be easy to read and to understand by any
user. Moreover the user may be able to modify theracter classes or the writing rules. For
example, the following set of Perl instruction(fr the Arabjoin filter for rendering Arabic text
[ARAJ.98]), even though they are effective, theg aot easy to read or to modify by an average
user:

Suchar[$i] = $a && Hinal{$c} && $medial{$b}

|| $final{$c} && Sinitial{$b}

|| $a&& $final{$b}

|| $isolated{$b}

|| $b;

2 This exampl e has been designed using the XMBDFED font editor designed by Mark Leisher.

14" International Unicode Conference -5- Boston, MA, March 1999

Encoding script-specific writing rules based on thecode character set

3.2. Existing Unicode UNIX based multilingual texieditors

Multilingual text editor design has frequently beearried out under the form of
independent experimental studies, often leadinmcompatible products which are difficult to
use and do not conform to coding norms. Howeveresdmicode-based multilingual text editors
are in development or in improvement stages esipeéia the Unix system. Among this work,
the OMEGA project includes a number gEX extensions designed to improve multilingual text

processing. It uses the ISO-10646/Unicode stancadeé with conversion mechanisms for other
standard codes. Another text editor is MULE, a iimgual plain-text editor based on GNU
Emacs. But Mule does not support Unicode and usasstandard internal encoding. Otherwise
there are some improvements for character convetsidJnicode (UTF-8) and to make Emacs
21 compatible with Unicode [MULE.97]. Another Unai®-based text editor on Unix is the
YUDIT multilingual text editor for the X window sysm developed by G.Sinai [YUDI.98].
Lastly, the Unicode-based multilingual text ediwee present here is UCEDIT (Unicode Editor)
from the MUTT toolkit (Multilingual Unicode Text Takit) developed by Mark Leisher
[MUTT.98]. MUTT is a Motif-based tool suite with mg important features.

I\VV. The Multilingual Unicode Text Toolkit (MUTT)

4.1. CRL PANGEA Project

Begun in September of 1997, the Pangea projecsu@sosed to be a three-year effort to
create a standards based infrastructure for nmgtikl computing in general as well as natural
language processing. The project lasted for one sed resulted in the MUTT (Multilingual
Unicode Text Toolkit) for application developergésfigure 4). The project goal was to use a
single character set internally along with low-letext handling facilities for strings and files,
text entry and editing capabilities for as manyglages as possible, multilingual searching and
sorting capabilities, printing of multilingual texdvailable with Motif/X11 interface components
for text display and entry and provide some basittiimgual capabilities for Java.

The MUTT toolkit is widely used, supporting hundseaf users in a variety of languages.
Some of its strengths include a wide variety oflgaxtensible input methods, full Unicode text
editing in the Motif/X11-based environment and ialittlava support. MUTT currently supports
approximately 40 languages with 95 input methods$ @mversion between Unicode and over
100 encodings and transliterations.

4.2. The Current MUTT Context Analyzer

The current context analyzer used for MUTT depenmtda dictionary that maps groups of
characters to glyphs. No script-specific informatis used except for the few simple cases in
Greek and Hebrew. The context analyzer also hakirbuules for common situations like
handling non-spacing marks. The problem with thpproach is that the context analysis
character classifications and rules are very iitfllexand changing them is a difficult process that
requires that programs be recompiled.

14" International Unicode Conference -6 - Boston, MA, March 1999

Encoding script-specific writing rules based on thecode character set

: File Edit Search Text Window

* Latin - CRL Latinl

r.
L
i

A multilingual text editor
Un éditeur de textes multilingues
I HOrOASEIYHEN TEKCTOBEIH PEfAKTOD

RN 1| ITTNIPY | I | | N | P c_oLlJ_l

Eeee moddyheooong snelepyuotic Ketpévau
ANTH NTEN 20N MY
En
o e L
firumsrmanal egurmuE s n
F‘hﬂﬂmummﬁﬂmmﬁﬁ%pﬁmam‘f

B upwhi gnpdupmih hplmpmghog hnguyl wpmg pup dhnhi ...

Temdbgen oligmbogmn Fyedmgdn dggeon Jodogmn ..

Figure4. A screen of UCEDIT (MUTT)

V. The MUTTCA context analyzer

5.1. The MUTTCA architecture

W NDFN 5nx11y 1

UHBIA TEKCTOSBA [

Fomalism
compiler

Context
analyzer

- Transducer -

Figure 5 MUTTCA context analyzer architecture

The MUTTCA context analyzer is composed in two maarts:
- Language formalisms
- Programs

14" International Unicode Conference -7- Boston, MA, March 1999

Encoding script-specific writing rules based on thecode character set

5.1.1. Language formalisms

Each language is represented on the basis obllogving data:

Language writing rules formalism (character clagseswriting rules).

Transliteration tables (for ASCII keyboards).

Code conversion tables (for character code cormeitstween the different coding systems).

The "Transliteration tables" are simply classiedlés containing correspondences between
the ASCII keys and the characters of considereduages. The "Code conversion tables" are
classical tables too containing correspondencegdeet the different character coding systems.

The structure of the writing rules formalism isfabows:

#
COWMMENTS SECTI ON
#
#

BEG N TRANSCODI NG
U+ NNNRE U+NNNN
U+NNNRE U+ NN
U+NNNN: U+NINNN

END TRANSCODI NG

Comment s
#

BEG N CLASSES

CL={ U+NNNN, U+NNNN, U+NNNN, . . . }
C2={ U+NNNN, U+NNNN, U+NNNN, . . . }
C3={ U+NNNN, U+NNNN, U+NNNN, . . . }
END CLASSES
Comment s
#
BEG N RULES
Gy, G n, "ap, by"; /* comments */
Gy, G n, "ap, by"; /* comments */
G, G n, "ap, by"; /* comments */
END RULES

[* coments */
[* coments */
[* coments */

14" International Unicode Conference -8-

Boston, MA, March 1999

Encoding script-specific writing rules based on thecode character set

a. TRANSCODING SECTION:

This section includes, if they exist for the caesed language, trancoding
correspondences between the character codes anccah@sponding glyph codes having the
same glyph image. For example, the Arabic chard&BABIC LETTER AIN" which has the
U+0639 code in the U+0600 to U+06FF block has aesponding equivalent glyph image coded
U+FEC9 in the Arabic Presentation Forms-B (U+FEGQ#FEFF). In the "TRANSCODING

SECTION?", this correspondence is written:
U+0639: UHFECO

FECT
ﬂ £

b. CHARACTER CLASSES SECTION:

This section includes a classification of the elsters of the considered language
according to their common characteristics. For gdanthe Arabic characters can be classified
as belonging to the following sets:

- Class of non-joining characters

- Class of dual joining characters

- Class of right joining characters
Class of digits

c. WRITING RULES SECTION:

This section includes the different writing rufes each character class of the considered
language, thus according to the scriptural rulearonly used for the language. The set of rules
is built on the basis of a finite state transddoemalism. Each rule has the following syntax:

Cn,Cnin, "ap, by";

Where:

- C,: Contextual Class, is the class containing tharacter (contextual character) near the
cursor on the edited text.

- Cn: Input Class, is the class containing the chtaraantered on the keyboard.

- n: Flag indicating which character near the cutsdoe deleted for replacing it by another
glyph (0: no deletion, 1: deletion of the right cheter, -1: deletion of the left character).

- &, Arithmetic step indicating the distance betwéss transcoded contextual character and
the corresponding glyph in the compatibility aredoé displayed.

- by: Arithmetic step indicating the distance betwésstranscoded entered character and the
corresponding glyph in the compatibility area todmplayed.

Even if this formalism seems a little complicated it can be easily mastered by any user
having knowledge of the considered language and whots to modify or to improve the
language formalism. Moreover this formalism makas fanguages completely independent of
the programs. Thus the modification of the languémenalisms does not require the re-
compilation of the programs.

14" International Unicode Conference -9- Boston, MA, March 1999

Encoding script-specific writing rules based on thecode character set

5.1.2. The context analysis programs

The MUTTCA programs are composed in two typesrofpams:
- The formalism compiler program.
- The context analyzer program.

The formalism compiler program has the role of &heg the structure of the formalism
asked by the user when typing the text and loatitqgbe used by the context analyzer program.
The context analyzer program has the role of expg@ny entered character and analyzing it
according to the corresponding language writingsul

These programs are being written in JAVA which nsatkeem portable in many software and
hardware environments.

5.2. Context analyzer applications
5.2.1. Dynamic composition of accented characters

The Unicode standard allows for the dynamic contmosiof accented forms. The
combining characters are encoded following the bas&racters to which they apply. For
example inputting and encoding the French compcobkadacter &' through the sequence+""
is naturally logical and easier for both the used &he computer than sequences such
"compose_key+e+” or "Mt+e", etc. The MUTTCA context analyzer includes rulés
composing accented characters with an escape meschémeventually avoid accentuation. For
example, accented characters in French can be caapsing the following rules:

- e+':>é;

- a+‘:>a;

- e+ESC+'=>¢}
- etc.

5.2.2. Interpreting Characters and Rendering Glyphs

The Unicode Standard does not define glyph imagedgefines how characters are
interpreted, not how glyphs are rendered. In thie¢cthe context analyzer program is responsible
for rendering glyphs on the screen. An abstractattear such "ARABIC LETTER AIN" which
has the U+0639 code value can have different vimksentations (called shapes or glyphs) on
screen or paper, depending on context (see figu@iBerent scripts which are part of Unicode
can have different writing rules for rendering digpand also composite characters, ligatures, and
other script-specific features. The results on estrer paper can differ considerably from the
prototypical shape of a letter or character. Femeple:

- Greek: o (beginning and middle of a word) (word ending)
-German: s+s=>s+ESC+s=>ss etc.
- Arabic:

14" International Unicode Conference -10 - Boston, MA, March 1999

Encoding script-specific writing rules based on thecode character set

The £ character is written:
¢ at word beginning (science f_l.c)
a inside the word (institute 1gas)

& in the word ending (group C_a_:\..]
4 when it is not linked (section L,o:)_&]

Figure 6 Character associated glyphs

5.2.3. Arabic vowels

The Arabic vowels are super and subscript non-sgacharks combined with the
characters (consonants). The Unicode Standard wloespecify a sequence order in case of
multiple vowels applied to the same character sitltoere is no possible ambiguity of
interpretation. But the problem is related to thenber of vowels for the same character. The
vowel ARABIC SHADDA (U+0651) is the only one whiatan be combined with only one of
the other vowels and the vowel ARABIC SUKUN (U+08%2n not be combined with any other
vowel. This exceptions can be taken in considemnaiyp the MUTTCA context analyzer through
specific rules which are being added.

5.3. Example for rendering Arabic script-based glyps
5.3.1. Arabic script and Arabic block in Unicode

The Arabic script is extended for representing mioer of other languages than Arabic,
such Persian, Urdu, Pashto, Sindhi and Kurdists Written from right to left and it is cursive.
The same letter may be written in different forrepehding on its position in the word. The
Unicode standard encodes the basic Arabic chasartdhe same relative positions asl80D-
8859-6 The different glyphs of characters are represkmé¢he Compatibility area of Unicode.

5.3.2. Compatibility area and Arabic script-based typhs in Unicode

Compatibility characters are those that would naweh been encoded except for
compatibility because they are variants of charactdready coded. Most of the compatibility
characters are located in the "Compatibility aréarabic contextual form glyphs, Arabic
ligatures, etc.). The principle of using compatiipilcharacters in Unicode coded texts is to
maintain the main information in the text. Replacen character by its compatibility equivalent
character may change the coding information intéx¢ but it may not change the information
which is necessary for text processing such aggoot searching.

14" International Unicode Conference -11 - Boston, MA, March 1999

Encoding script-specific writing rules based on thecode character set

5.3.3. Standard Arabic script-based glyphs adoptetb demonstrate MUTTCA

The Arabic script-based classes and writing rulesduin MUTTCA correspond to the
"Joining Classes" and the"Joining Rules" defined in the Unicode Standard. The Arabic
rendering rules are applied on the range of theel#aabic characters of Unicode 2.1 (U+0600 to
U+06FF or exactly U+060C to U+06F9) and uses thatecdual glyphs of the Arabic
Presentation Forms-A (U+FB50 to U+FDFF) and thebfrd@resentation Forms-B (U+FE70 to
U+FEFF). But in our example we use the range ofAtabic glyphs (U+FE80 to U+FEFF), see
figure 7.

PN T A T I T S IS S I T I T N Y
. |2 \ i i A R i [ER G i I3 & | =
I R T T R O I IV S R I I P ~ e le |2 = ¢ |& N VU PO IR I I IO S
M 2 3 PV T U PR i) £ ¢ > oo | on | s oo | ol | b s SN TP N O TR T
N sl e i PR I R I A I I O O S AP O P D I T e
. " ° i | | | 8 G ol a | s B IET I I S I S I AR N | Lo
[WEE FEEC Jreco N reeo Y reec Jreec Jreeo | reee [reec Jreen
. § ¥ vt o Tovo A s PN s * 1 - - - a o o |4 L - 4 a 4) s |
coo N et e e N ee N e N e N e feoo N en N e [ee N e %3 Fero | rers J rere) rers J rera Jrers J rere Jrers J rers | rero J Fera J rers J FEFC] FeFD | FEFE | FEFF
i Pl [IO N P (PO I R T R el | o oY Y R |y x|

Figure 7 Arabic characters and glyphs from Unicode adopietemonstrate MUTTCA
We may mention that our goal in this paper is tespnt a modular and standard
formalism for the Unicode-based context analysize €Example that we propose is limited but
the analysis could be easily generalized by simaplging new character classes and new writing
rules.
5.3.4. Example of a simple Arabic formalism

Here is an extract of a simple formalism for thateat analysis of Arabic:

#

The Multilingual Unicode Text Tool kit (MJTT)

Conputing Research Laboratory, New Mexico State University
#

Arabic witing rules

Copyright (c) 1998 - CRL

#

This set of rules is conpatible with Unicode.

The rendering rules are applied on the range of the basic
Arabic characters of Unicode (W+0600D to WO06FF / U+060C to U+06F9)
and use the contextual glyphs of the Arabic Presentation
Fornms-B (U+FE70 to U+FEFF).

#

TRANSCODI NG

14" International Unicode Conference -12 - Boston, MA, March 1999

Encoding script-specific writing rules based on thecode character set

BEG N TRANSCODI NG

UH+0621: U+FESO
UH+0626: U+FE89
WH0628: U+FESF
U+062A: U+FE95
U+062B: U+FE99
U+062C: UHFESD
U+062D: U+FEAL
U+062E: U+FEAS
WH+0633: U+FEBL
U+0634: U+FEB5S
WH+0635: U+FEB9
U+0636: U+FEBD
WH0637: UL+FECL
UH+0638: UHFECS
WH0639: U+HFECO
WH063A: UI+FECD
UH+0641: U+FEDL
WH0642: U+FEDS
U+0643: U+FED9
WH+0644: U+FEDD
U+0645: U+FEE1
UH+0646: U+FEES
U+0647: U+FEE9
U+064A: U+FEF1
U+0622: U+FE81
U+0623: U+FE83
U+0624: U+FE85
U+0625: U+FE87
WH0627: UL+FEBSD
U+0629: U+FE93
WH062F: U+FEA9
U+0630: U+FEAB
WH+0631: UL+FEAD
U+0632: U+FEAF
UH+0648: U+FEED
U+0649: U+FEEF

END TRANSCODI NG

BEG N CLASSES

Control characters

C1={ U+0000- U+0007, U+0009- U+001A, U+001C- U+001F} /* control */
C110={ U+0008} /* backspace */
C111={ U+007F} /* delete */

Co={ U+0020} /* space */

Synbol s

C2={ U+0021- U+002F, U+003A- U+003E, U+0040, U+005B- U+0060, U+007B- U+007E)
C200={ U+061B, U+061F, U+066A- U+t066D} /* Arabic synbols */

14" International Unicode Conference -13 - Boston, MA, March 1999

Encoding script-specific writing rules based on thecode character set

C3={ U+0660- U+0669}
Non-j oi ning characters
C7={ U+FE8B0} /* haneza */

Dual joining characters

| ndependent forms of dual joining characters

C60={ U+FE89, U+FE8F, U+FE95, UI+FE99, U+FE9D, UI+FEAL, U+FEA5, U+FEB1, U+FEBS,
WFEB9, U+FEBD, U+FEC1, U+FEC5, UIHFEC9, U+FECD, UI+FED1, U+FED5, U+FEDQ,
W+FEDD, U+FEE1, U+FEES, U+FEE9, U+FEF1}

Initial fornms of dual joining characters

C61={ L+FE8B, U+FE91, U+FE97, UI+FE9B, U+FE9F, U+FEA3, U+FEA7, U+FEB3, U+FEB7,
WFEBB, U+FEBF, U+FEC3, U+FEC7, U+FECB, U+FECF, U+FED3, U+FED7, U+FEDB
W+FEDF, U+FEE3, U+FEE7, U+FEEB, U+FEF3}

Medial forms of dual joining characters

C62={ U+FEBC, U+FE92, U+FE98, UI+FE9C, U+FEAO0, UI+FEA4, U+FEA8, U+FEB4, U+FEBS,
WFEBC, U+FECO, U+FEC4, U+FEC8, UHFECC, U+FEDO, U+FED4, U+FED8, U+FEDC,
U+FEEO, U+FEE4, U+FEES, U+FEEC, U+FEF4}

Final forms of dual joining characters

C63={ U+FEBA, UI+FE90, U+FE96, UIHFE9A, U+FEQE, UIHFEA2, U+FEA6, U+FEB2, U+FEBSG,
W+FEBA, U+FEBE, U+FEC2, U+FEC6, UH+FECA, U+FECE, UI+FED2, U+FED6, U+FEDC,
U+FEDE, U+FEE2, U+FEEG, U+FEEA, U+FEF2}

Right joining characters

Independent-initial forns of right joining characters

Cr70={ U+FE81, U+FE83, U+FE85, U+FE87, U+FEBD, U+FE93, U+FEA9, U+FEAB, U+FEAD
WH+FEAF, U+FEED, U+FEEF}

Medial -final forns of right joining characters

C71={ U+FEB2, UI+FE84, U+FE86, UI+FE88, U+FEBE, U+FE94, U+FEAA, U+FEAC, U+FEAE
WH+FEBO, U+FEEE, U+FEFO}

END CLASSES

BEG N RULES

C,C:0,"b"; /* non particular characters: not changed */
Cc+,C110:-2,""; /* backspace */

c-,C111:1,""; /* delete */

14" International Unicode Conference -14 - Boston, MA, March 1999

Encoding script-specific writing rules based on thecode character set

C3,C3:+1,"a, b"; /* Numbers */

C+,C5:0,"b"; /* space */

C,Cr:0,"b"; /* hanza */

Cr, C60:0,"b"; /* dual joining characters: independent form*/
C+,Cr0:0,"b"; /* right joining characters: independent-initial form™*/
Rul es for dual joining characters

-

state: dual joining character in independent form

C60, C60: +1, "b+1, a+2"; /* dual joining: final */

C60, C70: +1, "b+1, a+2"; /* right joining: final */

state: dual joining character in initial form

C6l, C: +1,"b, a-2"; /* dual joining i ndependent + any */

ce1, C110:-1,""; /* backspace */

c61, C111:1,""; /* delete */

C61, C60: 0, "b+3"; /* dual joining: medial */
C61, C70: 0, "b+1"; /* right joining: medial */
state: dual joining character in nedial form
C62,C*: +1,"b, a-2"; /* dual joining final + any */
ce62, C110:-1,""; /* backspace */

c62, C111:1,""; /* delete */

C62, C60: 0, "b+3"; /* dual joining: nedial */
C62, C70: 0, "b+1"; /* right joining: nedial */
state: dual joining character in final form

C63, C60: +1, "b+1, a+2"; /* dual joining: final */
C63, C70: +1, "b+1, a+2"; /* non regular: final */
END RULES

#

V1. Conclusion

The method we presented in this paper has prdyideen demonstrated for different
languages. The language formalism is easy to utathetsind to modify by the user. Indeed some
users have improved some language support simplgdoyng new character classes or new
writing rules or modifying them. For instance threypous example for Arabic rules can be easily
improved for rendering the different forms of th&M ALIF Arabic ligature or the Arabic
vowels. However at the time of writing this papig writing rules syntax &,,Cm:n,"a p,bq";>
is only bi-dimensional (one contextual class and mput class). This syntax is being improved
since an entered character between two characteyschange the glyphs for both the right and
the left characters. In addition, character classgsalso be extended to "string classes" to use
this formalism for applications processing chanasteings or words (morphological or syntax
analysis, etc.). Some other improvements will bedenan the JAVA programs to make the
MUTTCA context analyzer portable and reusable imnyndifferent hardware and software
Unicode based environments.

14" International Unicode Conference -15 - Boston, MA, March 1999

Encoding script-specific writing rules based on thecode character set

VIl. References

[ARAJ.98] Roman Czyborra, The Arabjoin script fendering Arabic text.
http://czyborra.com/unicode/arabjoin

[BOUA.97] Boualem A.M., Harié S., “MtScript: a milihgual text editor”, Computers and the
Humanities, Volume 31, No. 2, Kluwer Academic Rsieérs, 135-151, 1997.

[BOUA.90] A.M. Boualem, "The multilingual terminal", researateport, INRIA Sophia
Antipolis, January 1990, 1-4.

[CBKH.95] C. Bigelow, K. Holmes, “The design of &a\LODE font”, version francaise dans le
Cahier GUTenberg n°20, May 1995, 81-102.

[LABO.95] A. Labonté, "Input methods to enter chaeas from the repertoire of ISO/IEC 10646
with a keyboard or other input devices". ISO/CEICITSC18/GT9 Working Draft, February
1995. ftp://ftp.funet.fi/pub/doc/charsets/ucs-inputthods

[LIST.98] Archives of the Unicode mail list <unice@unicode.org>

[MULE.97] The MULtilingual Enhancement to GNU Emacs
http://lwww.etl.go.jp/~mule/MulePage.html

[MULT.97] MULTEXT project was coordinated by the &$ "Parole et Langage" Laboratory
for building standard methods for linguistic datpnesentation and developing language
processing tools for about fifteen languages.

http://www.Ipl.univ-aix.fr/projects/multext/

[MUTT.98] The Multilingual Unicode Text Toolkit, CR New Mexico State University.
ftp://crl.nmsu.edu/CLR/multiling/unicode/

[UNIC.98] The Unicode Web site
<http://www.unicode.org>

[UNST.96] The Unicode Standard, Version 2.0, Theicode Consortium, Addison-Wesley
Developers Press, 1996.

[YHJP.95] Y. Haralambous, J. PlaiceQ,"une extension degX incluant UNICODE et des
filtres de type Lex", Cahier GUTenberg n°20, Map4955-79.

[YUDI.98] Yudit Unicode editor for X window
ftp://sunsite.unc.edu/pub/Linux/apps/editors/X/

14" International Unicode Conference -16 - Boston, MA, March 1999

Encoding script-specific writing rules based on thecode character set

VIII. Biographies

Malek Boualem received a PhD in computer scienmm fNice university, France (1993). He has
been an associate professor at the Provence Uityversd worked with the French CNRS
Research Center. M.Boualem is specialized in nmgial software and is one of the authors of
MtScript (a multilingual text editor) which won th#996' CNRS/ANVIE prize. Now he is
working with the CRL in designing a Unicode-basadltitingual toolset.

Mark Leisher is a programmer with the Computing d2esh Lab of New Mexico State
University specializing in the development of mlulgual text processing software, particularly
based on Unicode.

14" International Unicode Conference -17 - Boston, MA, March 1999

